miércoles, 23 de octubre de 2019

Evaluación de Física II Tercer Corte 2019

Antes de iniciar tu examen toma en cuenta las siguientes consideraciones.

1.- Sólo puedes realizar una vez el examen.
2.- Necesitas un correo de Gmail para poder realizar el examen.
3.- Ten papel, lápiz, borrador y calculadora a tu disposición. 
4.- Necesitas tener una conexión de internet estable mientras realizas el examen.
5.- Sólo puede seleccionar un examen.

EXAMEN 1

viernes, 23 de febrero de 2018

LA ACELERACIÓN CAUSADA POR LA GRAVEDAD EN UN CUERPO EN CAÍDA LIBRE


La fuerza de atracción gravitacional hace que un objeto en caída libre sobre un cuerpo celeste se mueva, prescindiendo de eventuales resistencias atmosféricas, de modo acelerado, o sea, con un aumento constante de su velocidad por unidad de tiempo, y que se dirija hacia el centro del cuerpo celeste.

En la superficie de la Tierra el valor de esta aceleración, que se indica con la letra g, sería igual en cualquier punto si nuestro globo fuese perfectamente esférico y si la fuerza centrífuga debida a la rotación terrestre, que tiene como efecto una disminución de la fuerza de atracción gravitacional, tuviera en cualquier parte el mismo valor. Al no verificarse estas dos condiciones, g varía ligeramente de un lugar a otro.

En el ecuador, la aceleración de la gravedad es de 9,7799 metros por segundo cada segundo, mientras que en los polos es superior a 9,83 metros por segundo cada segundo. El valor que suele aceptarse internacionalmente para la aceleración de la gravedad a la hora de hacer cálculos es de 9,80665 metros por segundo cada segundo.

viernes, 13 de octubre de 2017

                                        PRINCIPIO DE BERNOULLI

            En dinámica de fluidos, el principio de Bernoulli, también denominado ecuación de Bernoulli, describe el comportamiento de un líquido moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido.

Aplicaciones del principio de Bernoulli

Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.
Tubería
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.
Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.
Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.
Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.
Dispositivos de Venturi
En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual está basado en el principio de Bernoulli.
Aviación y vehículos de alta velocidad
La sustentación de un avión puede describirse como una diferencia de velocidades en las alas de los aviones, por consecuente, si en el extradós el viento fluye más rápido, entonces se genera una pérdida de presión, y como en el intradós hay menos velocidad, su presión es mayor, esto genera una fuerza de sustentación que le da al avión la habilidad de mantenerse en el aire, de esta forma el ángulo de ataque del ala determina la diferencia de presión existente, y cuanta sustentación resulta, lo mismo sucede a la inversa con los alerones de los vehículos de alta velocidad, como los de Fórmula 1.1




viernes, 11 de agosto de 2017

PARTÍCULAS SUBATÓMICAS



PARTÍCULAS SUBATÓMICAS

Se le denomina partícula a un cuerpo dotado de masay del que se hace abstracción del tamaño y de la forma.
Una partícula subatómica es una partícula mas pequeña que un átomo, puede ser elemental o compuesta.
principios del siglo XX, se realizó el descubrimiento de unas partículas subatómicas llamadas protón, electrón y neutrón, estas están contenidas en el átomo.
Tal vez uno pueda preguntarse si estas partículas tan pequeñas pueden tener estructura; es interesarse darse cuenta de que si tienen estructura.
Para poder definir una partícula subatómica es necesario conocer las características de estas, las cuales describiremos a continuación.
Carga: La carga es una magnitud escalar (Solo se puede determinar su cantidad).
Spin: Movimiento de rotación sobre un eje imaginario.
Los científicos han desarrollado una teoría llamada el modelo Estándar que explica las diferentes moléculas y sus complejas interacciones con solo:
6 Quarks
6 Leptones
Las partículas subatómicas de las cuales se sabe su existencia son:

  • Bosón
  • Positrón
  • Electrón
  • Protón
  • Fermión
  • Neutrino
  • Hadrón
  • Neutrón
  • Leptón
  • Quark
  • Mesón
Las partículas están formadas por componentes atómicos como los electrones, protones y neutrones, (los protones y los neutrones son partículas compuestas), estas están formadas de quarks. Los Quarks se mantienen unidos por las partículas gluon que provocan una interacción en los quarks y son indirectamente responsables por mantener los protones y neutrones juntos en el núcleo atómico. 

Bosón

El bosón es una partícula atómica o subatómica, de spin entero o nulo, que cumple los postulados de la estadística de Bose-Einstein e incumple el principio de exclusión de Paulli (establece que doselectrones no pueden ocupar el mismo estado energético). Son bosones las partículas alfa, los fotones y los nucleidos con un númeropar de nucleones.
El bosón recibe su nombre por Satyendra Nath Bose, un científicoBengali responsable de su descubrimiento. Debido a su spin, los bosones siguen la estadística Bose-Einstein, en donde cualquier número de bosones puede compartir el mismo estado cuantico. Los bosones no son realmente resistentes si se ubican en el mismo lugar, estos mismos, tienen momentos intrínsecos angulares, en unidadesintegrales de h/ (2 El hecho de que los bosones puedan ocupar un estado cuantico les permite comportarse de manera colectiva, y son responsables por el comportamiento de los lásers y el helio superfluito.

Fermión

Es una partícula perteneciente a una familia de partículas elementales caracterizada por su momento angular intrínseco o spin. Los fermiones son nombrados después de Enrico Fermi, en el modeloestándar, existen dos tipos de fermiones elementales, que son: Los quarks y los leptones. Según la teoría cuantica, el momento angular de las partículas solo puede adoptar determinados valores, que pueden ser múltiplos enteros de una determinada constante h (Constante de Planck) o múltiplos semientereos de esa misma constante. Los fermiones, entre los que se encuentran los electrones, los protones y los neutrones, tienen múltiplos semienteros de h, por ejemplo ±1/2h o ±3/2h. Los fermiones cumplen el principio de exclusión.
El nucleo de un átomo es un fermion o boson, dependiendo de si el número total de sus protones y neutrones es par o impar respectivamente. Recientemente, los científicos han descubierto que esto causa comportamiento muy extraño en ciertos átomos cuandoson sometidos a condiciones inusuales, tal como el helio demasiado frió.

Quarks

El nombre genérico con que se designan los constituyentes de los hadrones. La teoría sobre los quarks se inicio a partir de los trabajosde Gell-Mann y Zweig (1966) y su existencia fue confirmada en 1977 (Por Fairbank y otros).
La física dedicada al estudio de la naturaleza fundamental de la materia ha formulado un modelo estándar, capaz de explicar una seriede hechos e incapaz de dar respuesta a otros. Este modelo se basa en la actualidad en la hipótesis de que la materia ordinaria esta formada por dos clases de partículas, los quarks (que se combinan para formar partículas mayores) y los leptones, además de que las fuerzas que actúan entre ellas se transmiten mediante una tercera clase de partículas llamadas bosones, que ya explicamos anteriormente. El spinde los quarks es de ½, hay seis tipos distintos de quarks que los físicos han denominado de la siguiente manera: up, down, charm, strange, top, y bottom además de los correspondientes antiquarks. 

La carga eléctrica de los quarks es fraccionaria de la unidadfundamental de carga; así por ejemplo, el quark up tiene una carga fraccionaria igual a 2/3 de la unidad elemental.
Los quarks no se encuentran libres en la naturaleza sino formando hadrones, estos se dividen en dos tipos:
mesones: Formados por un quark y un antiquark
bariones: Formados por tres quarks
Además de las cargas ya mencionadas, los quarks tienen otra carga de color, que no tiene nada que ver con el color real de estas partículas, y que mantiene unidos a los quarks mediante la interacciónfuerte, además de ser la responsable de la formación de estos hadrones. Esta interacción esta descrita por la cromo dinámicacuantica (QCD). Existen tres tipos de carga de color: roja, azul y verde. Los antiquarks presentan además cargas opuestas, antirroja, antiazul, y antiverde. Los quarks están unidos entre si mediante el intercambio de partículas virtuales mediadoras de la interacción fuerte: los gluones. Junto a los leptones, los quarks forman prácticamente toda la materia de la que estamos rodeados. El termino quark, fue propuesto por Murria Gell-Mann, sacado de una novela de James Joyce, Finegan’s wake, del verso Three Quarks for Mr. Mark.

Leptón

Nombre que recibe cada una de las partículas elementales de spin igual a +1/2 y masa inferior a la de los mesones. Los leptones son fermiones entre los que se establecen interacciones débiles, y solointeracciones electromagnéticas si poseen carga eléctrica. Además, los leptones con carga eléctrica se encuentran casi siempre unidos a un neutrino asociado.
Existen tres tipos de leptones: el electrón, el muon y el tau. Cada unoesta representado por un par de partículas. Una es una partícula masivamente cargada, que lleva el mismo nombre que su partícula, (Como el electrón). La otra es una partícula neutral casi sin masa llamada neutrino (tal como el electrón neutrino). Todas estas 6 partículas tienen antipartículas correspondientes (tales como el positrón o el electrón antineutrino). Todo los leptones cargados tienen una sola unidad de energía positiva o negativa (de acuerdo a si son partículas o antipartículas) y todos los neutrinos y antineutrinos tienen cero carga eléctrica. Los leptones cargados tienen 2 posibles giros de spin mientras que una sola helicidad es observada para los neutrinos (Todos los neutrinos son zurdos y los antineutrinos diestros). Los leptones obedecen a una simple relación conocida como la formula Koide. Cuando las partículas interactúan, generalmente el numero de leptones del mimo tipo (electrones y electrones neutrinos, muones y muones neutrinos, leptones tau y tau neutrinos) se mantienen igual. Este principio es conocido como la conservación del numero lepton. 

Hadrones

El hadron es una partícula subatómica compuesta de quarks, caracterizada por relacionarse mediante interacciones fuertes. Aunque pueden manifestar también interacciones débiles y electromagnéticas, en los hadrones predominan las interacciones fuertes, que son las que mantienen la cohesión interna en el núcleo atómico. Estas partículas presentan dos categorías: los bariones formados por tres quarks, como el neutron y el protón y los mesones, formados por un quark y un antiquark, como el pion.
La mayoría de los hadrones pueden ser clasificados con el modelo quark que implica que todos los números cuanticos de bariones son derivados de aquellos de valencia quark. 

Neutrino

Partícula nuclear elemental eléctricamente neutra y de masa muyinferior a la del electrón (posiblemente nula). El neutrino es un fermión; su espín es 1/2. Antes del descubrimiento del neutrino, parecía que en la emisión de electrones de la desintegración beta no se conservaban la energía, el momento y el espín totales del proceso. Para explicar esa incoherencia, el físico austriaco Wolfgang Pauli dedujo las propiedades del neutrino en 1931.
Al no tener carga y poseer una masa despreciable, el neutrino es extremadamente difícil de detectar; las investigaciones confirmaron sus peculiares propiedades a partir de la medida del retroceso que provoca en otras partículas. Billones de neutrinos atraviesan la Tierracada segundo, y sólo una minúscula proporción de los mismos interacciona con alguna otra partícula. Los físicos estadounidenses Frederick Reines y Clyde Lorrain Cowan, hijo, obtuvieron pruebasconcluyentes de su existencia en 1956.
La antipartícula del neutrino es emitida en los procesos de desintegración beta que producen electrones, mientras que los neutrinos se emiten junto con positrones en otras reacciones de desintegración beta. Algunos físicos conjeturan que en una extraña forma de radiactividad, llamada doble desintegración beta, dos neutrinos pueden, en ocasiones, fusionarse para formar una partícula a la que denominan "mayorón". Otro tipo de neutrino de alta energía, llamado neutrino muónico, es emitido junto con un muón cuando se desintegra un pión. Cuando un pión se desintegra, debe emitirse una partícula neutra en sentido opuesto al del muón para conservar el momento. La suposición inicial era que esa partícula era el mismo neutrino que conserva el momento en la desintegración beta. En 1962, sin embargo, las investigaciones demostraron que el neutrino que acompaña la desintegración de piones es de tipo diferente. También existe un tercer tipo de neutrino, el neutrino tau (y su antipartícula).
Actualmente, la posibilidad de que los neutrinos puedan oscilar entre una forma y otra resulta de gran interés. Hasta ahora, las pruebas en ese sentido son indirectas, pero de confirmarse sugerirían que el neutrino tiene una cierta masa, lo que tendría implicaciones profundas para la cosmología y la física en general: esta masa adicional en el universo podría suponer que el universo no siga expandiéndose indefinidamente sino que acabe por contraerse. Aunque existen distintas interpretaciones, algunos científicos consideran que lainformación sobre neutrinos obtenida de la supernova SN 1987A apoya la idea de que el neutrino tiene masa.

Mesón

Nombre que recibe cada una de las partículas elementales sometidas a interacciones fuertes, de espín nulo o entero y carga bariónica nula.
Los mesones, identificados por Powell en 1947 en los rayos cósmicos y cuya existencia había sido postulada por Yukawa en 1935, son partículas inestables, de masa generalmente comprendida entre la de los electrones y la de los neutrones. Los más estables, cuya vidamedia es del orden de la cienmillonésima de segundo, son los piones y los kaones. 

sábado, 3 de junio de 2017

CLASES DE VECTORES





                         CLASES DE VECTORES


1.- 
Fijos o ligados: Llamados también vectores de posición. Son aquellos que tienen un origen fijo .Fijan la posición de un cuerpo o representan una fuerza en el espacio.


2.-Vectores deslizantes: Son aquellos que pueden cambiar de posición a lo largo de su directriz.


3.- Vectores libres: Son aquellos vectores que se pueden desplazar libremente a lo largo de sus direcciones o hacia rectas paralelas sin sufrir modificaciones.


4.- Vectores paralelos: Dos vectores son paralelos si las rectas que las contienen son paralelas.



5.- Vectores coplanares: Cuando las rectas que lo contienen están en un mismo plano.


6.-Vectores concurrentes: Cuando sus líneas de acción o directrices se cortan en un punto.



7.-Vectores colineales: Cuando sus líneas de acción se encuentran sobre una misma recta.



¿Qué es un vector?

¿Qué es un vector?

Es un segmento de recta orientada (flecha) que se utiliza para representar una magnitud física.
CARACTERÍSTICAS DE UN VECTOR
·       PUNTO DE APLICACIÓN
Se refiere al punto en el cual actúa el vector
·       DIRECCIÓN
Es el ángulo que realiza el vector con ciertas rectas de referencia
·       SENTIDO

Indica cual es el origen y cuál es el extremo final de la recta

·       MODULO


 La longitud del segmento


MAGNITUDES ESCALARES Y VECTORIALES

                   MAGNITUDES ESCALARES 
Denominamos Magnitudes Escalares a aquellas en las que las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Ejemplo de ello son las siguientes magnitudes, entre otras:
·       MASA
·       TEMPERATURA
·       PRESIÓN
·       DENSIDAD

                   MAGNITUDES VECTORIALES 
Las magnitudes vectoriales son magnitudes que para estar determinadas precisan de un valor numérico, una dirección, un sentido y un punto de aplicación.



SISTEMA INGLES


UNIDADES DE LONGITUD
SIMBOLO
PULGADA (inch)
In
PIE (foot)
Ft
YARDA (yard)
Yd
MILLA (mile)
mi


OTRAS UNIDADES
SIMBOLO
GALÒN
gal
ONZA
oz
LIBRA
Lb